您的位置: 首頁>>關(guān)于我們>>行業(yè)動(dòng)態(tài) |
正準(zhǔn)備下班的python開發(fā)小哥哥
接到女朋友今晚要加班的電話
并給他發(fā)來一張背景模糊的自拍照
如下 ↓ ↓ ↓
敏感的小哥哥心生疑竇,難道會(huì)有原諒帽
然后python擼了一段代碼 剖析相片
剖析下來 emmm
拍照地址居然在 XXX酒店
小哥哥潰散之余 大呼受騙
python剖析相片
小哥哥將發(fā)給自己的相片原圖下載下來
并使用python寫了一個(gè)腳本
讀取到了相片拍照的詳細(xì)的地址
詳細(xì)到了詳細(xì)的街道和酒店稱號
引入exifread模塊
首先裝置python的exifread模塊,用于相片剖析
pip install exifread 裝置exfriead模塊
PS C:WINDOWSsystem32> pip install exifread
Collecting exifread
Downloading ExifRead-2.3.2-py3-none-any.whl (38 kB)
Installing collected packages: exifread
Successfully installed exifread-2.3.2
PS C:WINDOWSsystem32> pip install json
GPS經(jīng)緯度信息
其實(shí)我們平時(shí)拍照的相片里,躲藏了大量的私密信息
包含 拍照時(shí)刻、極端精確 詳細(xì)的GPS信息。
下面是通過exifread模塊,來讀取相片內(nèi)的經(jīng)緯度信息。
#讀取相片的GPS經(jīng)緯度信息
def find_GPS_image(pic_path):
GPS = {}
date = ''
with open(pic_path, 'rb') as f:
tags = exifread.process_file(f)
for tag, value in tags.items():
#緯度
if re.match('GPS GPSLatitudeRef', tag):
GPS['GPSLatitudeRef'] = str(value)
#經(jīng)度
elif re.match('GPS GPSLongitudeRef', tag):
GPS['GPSLongitudeRef'] = str(value)
#海拔
elif re.match('GPS GPSAltitudeRef', tag):
GPS['GPSAltitudeRef'] = str(value)
elif re.match('GPS GPSLatitude', tag):
try:
match_result = re.match('[(w*),(w*),(w.*)/(w.*)]', str(value)).groups()
GPS['GPSLatitude'] = int(match_result[0]), int(match_result[1]), int(match_result[2])
except:
deg, min, sec = [x.replace(' ', '') for x in str(value)[1:-1].split(',')]
GPS['GPSLatitude'] = latitude_and_longitude_convert_to_decimal_system(deg, min, sec)
elif re.match('GPS GPSLongitude', tag):
try:
match_result = re.match('[(w*),(w*),(w.*)/(w.*)]', str(value)).groups()
GPS['GPSLongitude'] = int(match_result[0]), int(match_result[1]), int(match_result[2])
except:
deg, min, sec = [x.replace(' ', '') for x in str(value)[1:-1].split(',')]
GPS['GPSLongitude'] = latitude_and_longitude_convert_to_decimal_system(deg, min, sec)
elif re.match('GPS GPSAltitude', tag):
GPS['GPSAltitude'] = str(value)
elif re.match('.*Date.*', tag):
date = str(value)
return {'GPS_information': GPS, 'date_information': date}
百度API將GPS轉(zhuǎn)地址
這里需要使用調(diào)用百度API,將GPS經(jīng)緯度信息轉(zhuǎn)換為詳細(xì)的地址信息。
這里,你需要一個(gè)調(diào)用百度API的ak值,這個(gè)可以注冊一個(gè)百度開發(fā)者取得,
當(dāng)然,你也可以使用博主的這個(gè)ak
調(diào)用之后,就可以將拍照時(shí)刻、拍照詳細(xì)地址都解析出來。
def find_address_from_GPS(GPS):
secret_key = 'zbLsuDDL4CS2U0M4KezOZZbGUY9iWtVf'
if not GPS['GPS_information']:
return '該相片無GPS信息'
#經(jīng)緯度信息
lat, lng = GPS['GPS_information']['GPSLatitude'], GPS['GPS_information']['GPSLongitude']
baidu_map_api = "http://api.map.baidu.com/geocoder/v2/?ak={0}&callback=renderReverse&location={1},{2}s&output=json&pois=0".format(
secret_key, lat, lng)
response = requests.get(baidu_map_api)
#百度API轉(zhuǎn)換成詳細(xì)的地址
content = response.text.replace("renderReverse&&renderReverse(", "")[:-1]
print(content)
baidu_map_address = json.loads(content)
#將回來的json信息解析整理出來
formatted_address = baidu_map_address["result"]["formatted_address"]
province = baidu_map_address["result"]["addressComponent"]["province"]
city = baidu_map_address["result"]["addressComponent"]["city"]
district = baidu_map_address["result"]["addressComponent"]["district"]
location = baidu_map_address["result"]["sematic_description"]
return formatted_address,province,city,district,location
if __name__ == '__main__':
GPS_info = find_GPS_image(pic_path='C:/女友自拍.jpg')
address = find_address_from_GPS(GPS=GPS_info)
print("拍照時(shí)刻:" + GPS_info.get("date_information"))
print('相片拍照:' + str(address))
Python小哥得到的結(jié)果是這樣的
相片拍照地址:('云南省XXXXXXX縣', '云南省', 'XXXX市', 'XXX縣', 'XXXX酒店')
云南彌勒XXXX酒店,這明顯不是老王女友工作的當(dāng)?shù)?/span>
小哥哥搜索了一下,這是一家溫泉休假酒店。
頓時(shí)就理解了
{"status":0,"result":{"location":{"lng":103.41424699999998,"lat":24.410461020097278},
"formatted_address":"云南省XXXXXXXX縣",
"business":"",
"addressComponent":{"country":"China",
"country_code":0,
"country_code_iso":"CHN",
"country_code_iso2":"CN",
"province":"云南省",
"city":"XXXXX市",
"city_level":2,"district":XXX縣",
"town":"","town_code":"","adcode":"532526",
"street_number":"",
"direction":"","distance":""},
"sematic_description":"XXXXX酒店",
"cityCode":107}}
拍照時(shí)刻:2021:5:03 20:05:32